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QUASIDYNAMIC MODELING OF HEAT-TRANSFER PROCESSES 

I. K. Butkevich, M. A. Zuev, 
and V. F. Romanishin 

UDC 621.594-71.045 

An analytic method is developed for describing heat-transfer dynamics, making 
effective use of the quasi-dynamic features of the processes. The results are 
given specific form for heat exchangers of two-flow, one-flow, and immersion 
type. 

Simulative modeling of transient conditions in different technological systems is clo- 
sely related to mathematical description of the dynamic changes in parameters characteriz- 
ing the structural elements of such systems. It is expedient here to distinguish two clas- 
ses of nonsteady processes differing in their rates: i) fast (pulsed) processes, in which 
the characteristic times ~* of parameter variation at the input to the element are commen- 
surate with, or less then, the relaxational times ~r of this element (T* ~ ~r); 2) slow 
processes, for which ~* ~ ~r; henceforward, these latter processes will be referred to as 
quasidynamic. Often, the transition from one set of operating conditions of the system to 
another may be divided into two analogous stages. The quasidynamic stage is the principal 
component of transient processes in many complex engineering systems, which explains the in- 
creased interest in the creation of corresponding models. 

Note that most traditional methods of describing the dynamics of heat-transfer proces- 
ses (numerical methods, Laplacian schemes, etc.) poorly reflect, and make practically no use 
of, the features of slow evolution of the systems, which entails incorrect computer analysis 
and complicates the solution of the problem of controlling processes in real-time conditions. 
This leads to the need to develop high-speed analytical models taking account of the quasi- 
dynamic features of the processes which occur. The creation of such models (for the des- 
cription of heat-transfer elements of cryogenic systems, in the present case) is the aim of 
the present work. 

The basic features of the theory developed are clearly exhibited in the simplest model 
of dynamic heat transfer between an isothermal wall and a one-dimensional heat-carrier flow, 
when the evolution of the flow temperature T is described by the classical relation 

OT OT 
p~Cv ~ + OCv ax -- ~H(T - -  T). 

Then, introducing the transport time ~0 = 9 ~/G and the interaction parameter U = ~/(GCp), 
the equation obtained is 

aT 
O T = u ( T  w - -T) ,  O < x ~ l ,  ~ > 0 ,  (1 )  +o ~ + Ox 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s :  T(O, z )  = T l ( ~ ) ,  T (x ,  O) = T 0 ( x ) .  Assuming ,  f o r  t h e  s a k e  o f  
s i m p l i c i t y ,  t h a t  ~0, U, T w = c o n s t ,  i t  may r e a d i l y  be shown t h a t ,  a t  t i m e  �9 e x c e e d i n g  t h e  
t r a n s p o r t  t i m e  z0 ,  t h e  o u t p u t  t e m p e r a t u r e  T2(~)  = T (1 ,  ~) i s  d e t e r m i n e d  n o t  by t h e  i n i t i a l  
d i s t r i b u t i o n  T 0 ( x )  b u t  by t h e  i n l e t  t e m p e r a t u r  e T 1 a s  a f u n c t i o n  o f  a d e l a y e d  a r g u m e n t  

T2 (x) = T + exp ( - -  U) [T1 (x - -  x0) - -  Tw ]. ( 2 )  
W 

W r i t i n g  t h e  a n a l y t i c a l  s o h t i o n  o f  Eq. (1 )  in  t h e  fo rm in  Eq. (2 )  o f f e r s  t h e  p o s s i b i l -  
i t y  o f  d i s p e n s i n g  w i t h  t h e  t r a d i t i o n a l  n u m e r i c a l  i n t e g r a t i o n  o f  Eq. ( 1 ) .  T h i s  fo rm o f  s o l u -  
t i o n  r emoves  t h e  many p r o b l e m s  i n t r i n s i c  t o  t h e  n u m e r i c a l  me thod ,  f u n d a m e n t a l l y  i n c r e a s e s  
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Fig. i, Indexing of boundary 
points and conventional nota- 
tion for two-flow heat exchan- 
ger. 

the speed of the calculations, and permits the organization of a simple and reliable algo- 
rithm for the description of the evolution of the parameters of systems containing similar 
structural elements. If real heat-transfer processes permitted elementary solutions of the 
type in Eq. (2), most problems in simulative modelling would present no fundamental diffi- 
culties. Thus, there arises a very urgent question: is there a sufficiently broad class of 
processes whose features allow elementary solutions expressed in terms of delayed arguments 
to be obtained? The results below clearly demonstrate that the quasidynamic processes have 
the required features; the importance of investigating these processes has already been no- 
ted. 

The essence of the quasidynamic description and its basic stages may be formulated as 
follows. 

i. The analytical solution of the static problem (when 8/~ = 0) is sought. The vector 
Y of steady parameter values at the output from the element and the corresponding coordinate 
distributions as a function of the input-parameter vector X are determined here. 

2. The corrections to Y associated with the dynamic components of the equations of the 
process are determined. It is assumed that these components are much less than the charac- 
teristic static terms, i.e., ~08/8~ ~ ~0/~* ~ i. Then, according to perturbation theory, 
the static profiles obtained may be used in calculating these corrections with in the frame- 
work of the first approximation. 

3. Approximate values of the delay times are derived from the coefficients of the dyna- 
mic derivatives and the parameters of the static dependences; the static functions of the 
delayed arguments may then be interpreted as quasidynamic solutions. In particular, for a 
smooth one-parameter dependence, this transition may be written in the form 

Y (~) = f I x  (~)1 - -  ~ k  ~ f x �9 f )  . 

This  r e l a t i o n  ( w i t h  a d e l a y e d  a rgumen t )  i s  more c o r r e c t  t h a n  t h e  e x p r e s s i o n  f o r  Y in  germs 
o f  t h e  d e r i v a t i v e  X, s i n c e  i t  a l l o w s  t h e  i n f l u e n c e  o f  t h e  form o f  t h e  i n p u t  p a r a m e t e r s  t o  be 
r e f l e c t e d  in  e x p l i c i t  fo rm and a l s o  p e r m i t s  s i g n i f i c a n t  s i m p l i f i c a t i o n  and s t a n d a r d i z a t i o n  
o f  t h e  a l g o r i t h m  f o r  t h e  c o m p o s i t i o n  o f  s y s t e m s  i n c l u d i n g  such  e l e m e n t s .  The u s e  o f  de-  
l a y e d  a rgumen t s  i s  e s p e c i a l l y  b e n e f i c i a l  i f  t h e  i n p u t  p a r a m e t e r  X changes  d i s c o n t i n u o u s l y  
( f o r  example ,  on s w i t c h i n g  on any e x t e r n a l  c o u p l i n g s ) ,  when t h e  q u a s i d y n a m i c  t e r m  xX i s  n o t  
s m a l l .  However ,  when u s i n g  Eq. ( 3 ) ,  c a u t i o n  i s  n e c e s s a r y  in  t h e  c a s e  o f  a weak d e p e n d e n c e  
o f  t h e  s t a t i c  s o l u t i o n  on t h e  i n p u t  p a r a m e t e r  X when f x '  ~ O. 

Thus ,  q u a s i d y n a m i c  d e s c r i p t i o n  e n t a i l s  d e t e r m i n i n g  t h e  s t a t i c  f u n c t i o n s  f ( X ) ,  t h e i r  
d e r i v a t i v e s  f x ' ,  and t h e  c o e f f i c i e n t s  ~. As an example ,  i t  i s  e x p e d i e n t  t o  c o n s i d e r  t h e  
a p p l i c a t i o n  o f  t h e  g i v e n  scheme t o  t h e  s i m p l e s t  e q u a t i o n s  o f  t h e  p r o c e s s  in  Eq. ( 1 ) .  Then,  
in  t h e  f i r s t  s t a g e ,  t h e  s o l u t i o u  o f  t h e  s t e a d y  p ro b l em  w i t h  a p a r a m e t r i c  d e p e n d e n c e  on �9 

d~  
a---T- = u ( r  ~ - -  ? ) ,  ~1~=0= Vl (~) 

takes the form 

'/" (x, -~) = T.  + exp (- -  Ux) IT~ ('0-- Tw 1. 

The second stage gives 

l 

T~ ('r) = 7'(1, "~)--'ro ~ exp [ U ( x  - -  1)] 
0 

(x, T) 
d x  ~- T + exp (--  U) iT1 (-r) - -  T ] - -  "~o exp (--  U) i/" 1. 

0"~ w 
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Finally, assuming that 

Y=T~, X=T~, [~=exp(--U), y=%exp(--U), 

in the third stage 

T2 (~) ~ ~ ~- exp (-- U) [TI (~ -- %) -- ~w ]. 

This example, the simplest, leads to absolute coincidence of the quasidynamic approximation 
and the accurate analytical solution in Eq. (2), which, of course, cannot be expected for 
more complex initial systems. 

In the case of several variables, the dependence of the output parameters Yi on the in- 
put parameters Xj is given by an obvious generalization of Eq. (3) 

where 

r~ (~) = f~ [Xj ('0] - -  ~ ]  1'uYj ~ f~ [Xj (-~--  qA], 
i 

) 

(3a) 

In writing the quasidynamic algorithm, it may be useful to express only the dynamic devia- 
tions in terms of the delayed arguments rather than the static function f(X). Then, in the 
same approximation, the equivalent form is 

_ 0[~ [Xj(T)--X;(~--T~)]. (3b) r~ (~) ~ f~ [xj (~)] Z 
OXj 

# 

If the time tij is found to be negative for some arguments, the corresponding term in the 
sum in Eq. (3b) is expediently replaced, with the same accuracy, by the term 

- -  [Xj (~ - -  I~1) - -  X j  (~)1. OXj 
These relations are now given specific form for the description of quasidynamic pro- 

cesses in the most inertial elements of cryogenic equipment: two-flow, single-flow, and im- 
mersion heat-exchangers. The static dependence of the input temperatures on the output tem- 
peratures was investigated for this case in a series of works [1-5], where the characteris- 
tic parameter ranges for which these dependences are significantly nonlinear in form were 
also determined [4, 5]. However, quasidynamic corrections are expediently calculated within 
the framework of a linear model, since they are presumed to be small. The averaging of the 
coefficients of the initial equations required for this purpose should ensure coincidence 
of the output temperatures calculated from linear and nonlinear models; this is assumed be- 
low. Such problems were discussed in [1-3], where combinatorial problems of the search for 
an arbitrary pair of boundary temperatures were solved. However, this tendency to general- 
ity fundamentally increases the unwieldiness of the final formulas. Therefore, in the pre- 
sent work, specific form is given to the most important version of the quasidynamic search 
for output temperatures, which allows the final results to be expressed in the form of time- 
delayed arguments (the expediency of their use was discussed above). 

Of most importance, in terms of applications, is the quasidynamic description of heat- 
transfer processes through the wall in a two-flow counterflow heat exchanger. Quasidynamic 
theory is now outlined in detail for this case. The corresponding traditional equations of 
the evolution of temperature fields may be written (Fig. i) in the form 

Ox 
OTs + qs), = - - q s = - -  9sf~sCS Ox 

G~ C~ ~OTR + ~RH~ (T~, - -  T R) = q~ = OR~C~ Ox 

07, +$w O:sfls(T s -  T w ) + o~RflR(T R-Tw)=qw =,ow~Cw. 0--~ 

(4) 

The influence of the hydraulic losses, heat conduction, external heat supply, and so on is 
assumed to be small here. The corresponding terms symbolically included in q may be given 
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specific form after detailed thermohydrodynamic description. Assuming also that 

O~sIl s~RII n kH kH 
krl  = % H s +  ~fl-l. R, U = OsCp--m-, V = ~Rc' CR'p 

1 [ %11 s ] 
es = ~sCSp qs + o,sl7s + a~HR q,~ , 

1 ccnF1n 

(5) 

Eq. (4) takes the form 

aT e 3Ts - -  U (Ts - -  Ts) = - -  e s, - -  - -  V ( T  R Ts) e n. (6)  
Ox Ox 

The input temperatures of the flows are assumed to be specified 

Ts!~= o = TI(z), TRI~= ~ : T3(x). 

The n o n l i n e a r  s o l u t i o n  of  t h e  homogeneous e q u a t i o n  (when q = O) was s t u d i e d  in  d e t a i l  in  [4,  
5 ] .  To d e t e r m i n e  t h e  s m a l l  quas idynamic  c o r r e c t i o n s ,  c o n s i d e r a t i o n  i s  l i m i t e d  h e r e  t o  t h e  
ca se  when U, Y = c o n s t  ( x ) ;  t h i s  a l l o w s  a s imp le  form of  t h e  b a s i c  t e m p e r a t u r e  p r o f i l e s  p a r a -  
m e t r i c a l l y  depend ing  on x t o  be o b t a i n e d  from Eq. (6) 

J r ( x )  
- -  (T~ - -  TO, T s (x) = Tt + D 

V [F - -  ~ (x)l (T 1 __ Ts), 
T R (x) ---- T3 + D 

(7) 

where 

P (x) = [exp ( f x ) -  tl/[, F = ~'l~=l, 

f = V - - U ,  D = I + V F .  
(8) 

The basic values of the input temperatures of the flows T 2 = TSIx= I, T 4 = TRIx= 0 and the 
mean values TS, TR required in what follows are determined from Eqs. (7) and'(8) 

IIF 
T~ = T I +  - D "  (T3--TO 

UF T T 
G = T~ + - - 5 - (  ~--  ~), 

Tr V ~  (T1--Ta), 

~R==T~q_ V ( F - - ? ) ( T ~ - - T 3 ) ,  
D 

(9) 

(I0) 

where F = (F - l)/f (here and below, a bar over a symbol denotes coordinate averaging, for 
i 

example: @ = f Tax). 
0 

To calculate the corrections to the output temperatures AT= and AT 4 due to inhomogeneity 
of Eq. (6), Eq. (6) is integrated with ~ ~ 0 with the same boundary conditions. Then 

'~ U~'(! - -  x) -~-- I F - -  ~'(1 x) 

(11) 
1 ~slZp( 1 AT~--~dX{o D--x) ~-e~[l+PF(1--x)ll.o )' 

Note further that the values of e determined ~rom Eq. (5) are expediently written in the 
form e = ed + $. I t is clear from Eq. (4) that the dynamic component e d is related to the 
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Fig. 2. Indexing of boundary points and fluxes 
in immersion heat exchanger. 

Fig. 3. Indexing of single-flow heat exchanger. 

terms q proportional to 8/8z, while s characterizes the influence of the remaining factors 
included in ~. Correspondingly, the desired corrections may also be divided into components: 
AT = AT d + AT. 

In calculating AT, $ = const is adopted in Eq. (Ii), on the assumption that it is inex- 
pedient to take account of the coordinate distribution of small q; they may be averaged us- 
ing Eq. (i0). Then from Eq. (i) 

A T " i = - -  ~ .  OimS"m, 
m=S,R 

(12) 

where 

UF U (F -- ~ VF 
(72S = 1 , 024 = o 4 s =  - - - ;  

D D ' D (13) 

(14R= 1 V (F- -  F) 
D 

Giving s p e c i f i c  form to the  dynamic component ~d in Eq. (5) in order  to  c a l c u l a t e  AT d, 
i t  must be noted  t h a t ,  accord ing  to Eq. (4 ) ,  the  p a r t  of  E d which i s  p r o p o r t i o n a l  to  8Tw/8~ 
contains the factor T w defined below. As may readily be shown, within the framework of the 
quas idynamic approximation 

T ~ T w , w & & 

where Tw = (~s~sTs + ~R~RTR)/(~SHS + ~RHR ) is the quasi-equilibrium wall temperature. In 
fact, omitting the small quantity qw in the third relation in Eq. (4), it is rewritten in 
the form 

aT w T, = T  - - r  , 
w w w 01: 

which shows, after differentiation and discarding terms of order (TwS/Sz) 2, that the above 
statement is valid. In addition, it is clear from this relation that the initial disequili- 
brium of the wall temperature field is exponentially damped, with a relaxation period ~w, 
so that times T exceeding ~w are considered below. As a result, it follows from Eqs. (4) 
and (5) that 

d aTs OTR 
~s - - - + r  U , 

= rs & w Or 

OTR (14) ~== Tw V .OTs + ~R 
& & 

where 
Ost~s (%11s)2 

*s - Os + r w asCS(%Ils + %I1~) ' (15) 
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t R -- 
PRQR (~R]"]R) 2 
GR +rw GRCR(O~SI'-IS -~ ~R/-]R) ' 

T ~ = ( % i i s +  =R//R) . 

To improve the quasidynamic description, it is now sufficient to substitute Eq. (14) into 
Eq. (ii), using the basic profiles in Eq. (7) in calculating (8Ts/8~) and (STR/8~). Then the 
corrections AT2 d and AT~ d obtained are proportional to the time derivatives of the set of 
parameters (Tl, T3, U, V) defining the profile in Eq. (7). The terms proportional to TI,~ 
may be written in compact form here, but calculation of the terms ~ U and V leads to extre- 
mely unwieldy final expressions, requiring additional simplifications. Taking the relatively 
weak dependence of U, V on the input parameters into account here, it is expedient to deter- 
mine the coefficients of the expansion of AT d with respect to U and u assuming in Eq. (14) 
that 

~md= ~ ~.,~ a~.& - const (x) (m = S,  R; ~ss  = ~s; 
n=S,R 

~SR=ir U; ~ R s = ~  V; tRR=tR). 

Then, denoting aij = 8Ti/ST j (i = 2, 4; j = i, 3; a2, = 1 - UF/D; a2a = UF/D; a41 = YF/D; 
a~3 = 1 - VF/D according to-Eq. (9), it is found from Eqs. (11)-(13) that 

OTj OT~[ 
i~1,3 a t  ~ a~ IT 1.3=c~ m,n=S, R 

( T i j  a r e  g i v e n  b e l o w ) .  To u s e  d e l a y e d  a r g u m e n t s ,  a i ~  = 8 T i / 8 ~  (~  = U, V) i s  i n t r o d u c e d  
f r o m  Eq. ( 9 ) .  Then ,  on t h e  b a s i s  o f  Eq. ( 3 b ) ,  an e q u a t i o n  e q u i v a l e n t  t o  Eq. ( 1 6 a )  i s  o b -  
t a i n e d  

d 
ATe' = -  ~ a~j [Tj (~) - -  Tj (~ - -  Tu) ] - -  E a ~  [~o (t) - -  (o (t - -  ~t~)] �9 ( 1 6 b )  

1=I ,3 ~=U,V 

Then, letting F = (Y - 2"F)/f, it is found that 

uv 
T~1--ts=~3--~ a- [(Ts+~R) Pq-Tw2(F+V~, (17a) 

m 

1 ,~g OTn 
~ = ~ " ch"Jm~ ---- " (17b) 

aZo m,n=S,R 

As a result of these calculations, the relations obtained in Eq. (16) and the delay time 
in Eq. (17) describe the quasidynamic shift in output temperatures of a two-flow heat exchan- 
ger. Note that the error in the quasidynamic calculation of the output temperatures T2(~) 
and T~(T) is determined by the terms (~delayBTl,s/8~) 2, reaching values of 0.1-1% in all 
stages of normal cooling of cryogenic units. 

The quasidynamic processes in three-flow, irmnersion, and one-flow heat exchangers may be 
described analogously. The relations determining the quasidynamics of the three-flow heat 
exchanger will be given in a subsequent work (on account of their unwieldiness). However, 
immersion and single-flow heat exchangers are characterized by sufficiently compact expres- 
sions, given below. Note that there is a certain generality in the description of all the 
elements, in particular, the unified system of differential equations in Eq. (18) for the in- 
teraction of the forward flow with the wall, assuming, as before, that the influence of the 
heat conduction and hydraulic losses is small, and the corresponding terms are symbolically 
included in 

100 



GsC~ OTs 
Ox 

OTs ) 
- - a s l l s ( r  - -  Y s ) : - - q s : - -  PsOsCSp ~ 4 - q s  , 

(18)  
C O~ +~. ~ s f l s ( T s - - T w ) + a ~ H R ( T ~ - - T w )  = qw = P'wQw w 0r 

In the case of an immersion heat exchanger, T R is the temperature of the liquid determined 
by the saturated vapor pressure. Here x varies from (i - Z) to i, where Z (Fig. 2) charac- 
terizes the position of the liquid level at time ~ (when Z = i, the whole volume is filled 
with liquid and, when Z = 0, with gas). For a single-flow heat exchanger (Fig. 3), T R is 
the temperature of the surrounding medium, and Z = i. 

Let 

~S ~s  aRHR 1 [ a S ~ S ~  
e - -  G s q s +  ] (19)  U ::  asC{ (asl7s -k aRHn) ' sCp ~ (~s Hs -Jr- =RH~) J " 

For the static case (qs,w = 0), a nonlinear analytical solution taking account of the sharp 
dependenc e of aR on T w characteristic of a boiling liquid was investigated in [5]. Here, as 
in the previous model, U = const(x) is assumed in determining the quasidynamic corrections. 
Then, specifying the input temperature Ts[x=z_ z = Ts[x= 0 = T~(r) parametrically depending 
on ~, it is simple to find the basic output temperature T= and the integral mean temperature 
Ts, which are required for the averaging of U, from Eq. (18) when q = 0 

T~ = T~ 4-(7'~- T~)exp (f), (20)  

Ts = TRq- (T~ -- TR) F, (21) 

where F = (exp(f) - l)/f, f = - UZ. 

To determine the terms AT 2 related to the part of e which is proportional to q, it is 
assumed that ~ = const, presuming the averaging of small terms q in Eq. (18) using the mean 
temperature from Eq, (21). Then 

AT~ : - - Z F e .  (22)  

Giving specific form to the dynamic part of e d, which is proportional to 8/~, the initial 
disequilibrium of the wall will be ignored here, as before, i.e., times �9 exceeding T w are 
considered. Then, within the framework of the quasidynamic approximation, introducing the 
following terms according to Eq. (20) 

a~--  OT~&o ( o = T a ,  T R, U, Z; aT ,=e*;  a r n =  1--e~; 

a u = - -  Z (T~ - -  TR) e~; a z = - -  U (T1 - -  T R) e'~), 

the quasidynamic shift in output temperatures may be obtained 

A T # : -  ~ a~% 0----7- = 

The delay times ~i, ~R, TU, ~Z of the parameters Tl, T R, U, Z are given here by the expres- 
sions 

% = "Cz = 2Tu = ZT s, "~ R := "[. .w Jr- ZTs ( 1 - -  --~--) , 

where 

psf~s (%fls) ~ p,~ ~ C~ . 
Ts : Gs" -F'cw GsCS(aslIs@ccRHR) ; %J =(~sHS-F~ ' (24) 

? = (F-- 1)/f. 

Note that the presence of the delayed argument in T R takes account of possible temperature 
variation of the saturated vapors in an immersion heat exchanger or the temperature variation 
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of the surrounding medium in a single-flow heat exchanger. For the latter, Z(T) ~ i, so 
that in this case ~z may be excluded from consideration. 

NOTATION 

r, time, sec; x, normalized coordinate; T, temperature, K; Cp, isobaric specific heat, 
J/kg.K; G, heat-carrier flow rate, kg/sec; p, density, kg/m3; ~, pipeline volumes, m3; ~, 
heat-transfer coefficients, W/m2"K; H, heat-transfer surface, m2; q, effective heat fluxes, 
W. Indices: S, forward flow; R, reverse flow; w, dividing wall. 
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SOLUTION OF INVERSE PROBLEMS FOR A SYSTEM OF QUASILINEAR 

EQUATIONS OF HEAT CONDUCTION IN A SELF-SIMILAR REGIME 

A. D. Iskenderov, T. B. Gardashov, 
and T. M. Ibragimov 

UDC 536.24 

Explicit solutions are obtained for inverse problems for a system of heat-conduc- 
tion equations in a self-similar regime. The thermophysical characteristic being 
sought depend on the temperature distribution. 

Mathematical modeling of a stationary heat-exchange process in two semiinfinite rods of 
different materials, joined by an "ideal" contact, is closely connected with the solution of 
an inverse problem concerned with the determination of the coefficients in the following sys- 
tem of nonlinear differential equations: 

M n 

OT~ O [ ~ (Tn) aT. 1 
g=l 

(x,t)E~, (1) 

with initial and boundary conditions 

Yl(x, 0)=u~, x < 0 ,  T2(x, 0)=u~, x > 0 ,  

T1 (0, t) = r~ (0, t); 2% I(T 0 aT1 [ = ~,~ (r2) or~ [ , I~=o -~-xj~=o t>o ,  

(2) 

(3) 

where u n are given constants, n = i, 2. 

The system (1)-(3) admits a self-similar solution of the form Tn(x, t) = Vn(Z), where 
z = xt -I/2 and the function Vn(Z) satisfy the equations 
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kii Zhurnal, Vol. 56, No. i, pp. 127-132, January, 1989. Original article submitted July 2, 
1987. 
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